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Abstract

This paper presents a detailed investigation on the volumetric transfer coe�cient (VHTC) model in solid±¯uid
porous media based on the volume averaging method (VAM). The VHTC is obtained by solving the closure
problem with the control-volume ®nite di�erence method. A thermal analysis is conducted to illustrate the thermal
nature of the VHTC, based on which, an improved VHTC model has been proposed by taking into account the

e�ects of the thermal entrance and the non-uniformity of the velocity ®eld. With this model, the applicability of the
VAM has been extended to large Peclet number laminar regime for convection heat transfer in porous media
characterized by straight ducts. 7 2000 Published by Elsevier Science Ltd. All rights reserved.

1. Introduction

In engineering applications, such as thermal energy
storage units and cooling of electronics components,
consolidated porous matrices with high thermal con-

ductivity have been used to enhance the overall ther-
mal performance. The heat transfer mechanisms in
such porous media involve not only heat transport in

each single phase, but also the heat exchange between
the matrices and the transport ¯uids. Thus, a theoreti-
cal prediction of the heat transfer coe�cient is of great
practical concern.

In the volume averaging method (VAM), a closure
problem in term of dimensionless closure variable c
has been developed to evaluate the volumetric heat

transfer coe�cient (VHTC) [1,2]. Being di�erent from

the conventional temperature quantity, the closure
variable c (which is denoted as cf if in the ¯uid and

cs if in the solid) is mathematically de®ned as the ®rst
order coe�cient in the local expansion of the phasic
temperature di�erence. Such a closure problem is fea-

tured by the jump condition at the solid±¯uid interface
and the periodic boundary conditions. Its solution is
dependent on the geometry of the microstructure, the
thermophysical properties of the constituents and the

average velocity ®eld. The analytical solution of the
closure problem and the VHTC for a circular tube
case was given in [3]. Quintard and Whitaker [2] dis-

cussed the development of the closure problem in a
mathematical manner. They also presented a numerical
solution for the two-dimensional unit cell in granular

porous media. However, the thermal nature of the
closure problem and the VHTC were not discussed in
their study. In the work by Grangeot et al. [4], the

VHTC is evaluated by ®tting the measured tempera-
ture pro®les with a system of phenomenological energy
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equations. The VHTC obtained in this way di�ered

from their numerical result. As to the availability of

the VHTC for thermal energy transport in porous

media, most studies are limited to pure heat conduc-

tion problems [2,4,5]. For convection heat transfer in

porous media, the application of the VAM has been

reviewed in the monograph [6]. In a recent work [7], it

was found that a full-version of the VAM formulation

with the constant VHTC model seemed unable to pre-

dict large Peclet number convection heat transfer with

enough accuracy. It is believed that a thorough investi-

gation of the VHTC is of both theoretical and practi-

cal signi®cance.

In this paper, the VHTC model in solid±¯uid porous

media is investigated in detail. Consolidated unit cells

are used throughout the study. First, the numerical sol-

ution of the closure problem is described and the

VHTC results for di�erent unit cells are given. Phase-

identifying functions are introduced to denote the geo-

metric domains and to unify the closure equations of

the two phases. A thermal analysis of the VHTC is

then presented and illustrated by examining the ana-

logous thermal problems. This thermal analysis also

serves as a theoretical basis on which the VHTC

model can be modi®ed according to the analogous

heat transfer mechanism occurring at the microscopic

Nomenclature

a, b geometrical quantities, Fig. 7
Afs interfacial area
AW, AE coe�cients in the discretized

equation
bff , bfs, bsf , bss vector closure variables related to

thermal conductivities

�rc�f heat capacity of the ¯uid
c0 constant
cff , cfs source terms in the closure problem,

Eqs. (5a) and (5b)
f �x� modi®cation function, Eq. (21)
H, Hf dimensionless volumetric heat trans-

fer coe�cients, Eqs. (2a)±(2c)

H�x� modi®ed heat transfer coe�cient
model, Eq. (20)

k thermal conductivity

Keff e�ective thermal conductivity tensor
Kff, zz, Kfs, zz,
Ksf, zz, Kss, zz

zz components of the thermal con-
ductivity tensors

l lattice vector
l, L characteristic microscopic length

scale and macroscopic length scale

nfs normal vector from the ¯uid to solid
Nux local Nusselt number for a circular

tube
Pel huif lf=af , microscopic Peclet number

PeL huifL=af , macroscopic Peclet number
q heat ¯ux through the interface
r position vector

r cylindrical coordinate
r0, r1 radii of the circular unit cells, Fig. 1
s solid phase

Su source term in numerical procedure
T temperature
hTi efhTfif � eshTsis, spatial average tem-

perature

Tfs temperature at the interface

hTfif , hTsis intrinsic averages of the ¯uid and
solid temperature, respectively

u velocity vector

huif intrinsic average of the vector vel-
ocity

u vector scalar; velocity component in

x direction
V volume
x, y, z rectangular coordinates

Greek symbols
O phasic domain
a thermal di�usivity

b aspect ratio
ef , es volume fraction of the ¯uid and the

solid, respectively

j general variable used in numerical
procedure

g phase-identifying function, Eq. (4a)

k ks=kf , solid to liquid conductivity
ratio

s phase-identifying function, Eq. (4b)

c heat exchange related closure vari-
able

cI uni®ed closure variable

Subscripts
+ RHS of a control volume face
ÿ LHS of a control volume face

f ¯uid phase
s solid phase

Superscripts
f intrinsic average in the ¯uid
s intrinsic average in the solid
' deviation quantity
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level. One example is shown for convection heat trans-
fer in porous media by incorporating the heat transfer

theory for a single circular tube in an improved model.

2. Closure problem and solution procedure

2.1. Closure problem and VHTC

In the VAM, the closure problem in term of c vari-

able for solid±¯uid porous media is given as [1,2]h
�rc�fhuif � rcf

i
� r � ÿkfrcf

�ÿ kf

Vf

�
nfs � rcf dAfs �1a�

0 � r � ÿksrcs

�ÿ ks

Vs

�
nsf � rcs dAfs �1b�

cf � cs � 1, �1c�

nfs � kfrcf � nfs � ksrcs at Afs �1d�
and periodic boundary conditions are:

cf �r� l� � cf �r� �1e�

cs�r� l� � cs�r�: �1f�
As the closure variables cf and cs are deviation quan-

tities, their intrinsic averages are imposed to be zero.
Here the subscripts f and s represent the ¯uid and the
solid, respectively. Eq. (1c) shows a jump condition at
the solid±¯uid interface. In the above closure problem,

the ¯uid ¯ow has been assumed incompressible and
laminar. The porous medium is homogeneous and the
thermophysical properties are assumed to be constants

over a representative unit cell, or at the microscopic
level. Given the geometry of the unit cell, the two
phases and the average velocity huif , the closure

problem is solvable. From the c ®eld one can obtain
the VHTC by the following formula

H � l 2

V

�
nfs � rcf dAfs: �2a�

For the time being we pay our attention to a class of
consolidated porous media with heat transfer enhance-

ment bearing in mind. In the consolidated porous me-
dium system, the solid matrix, acting as a bridge,
conducts heat from the source and then transfers it to

the cooling ¯uid or thermal storage units. Fig. 1 shows
three kinds of consolidated unit cells used in this
study:

RR: rectangular unit cell with a rectangular ¯uid
domain;

RC: rectangular unit cell with a circular ¯uid
domain;
CC: idealized circular unit cell with a circular ¯uid

domain.

It is convenient to have the VHTC based on the length
scale of the ¯uid domain:

Hf � l 2f
Vf

�
nfs � rcf dAfs for case RR, �2b�

Hf � r 20
Vf

�
nfs � rcf dAfs for cases RC and CC: �2c�

The relationship of H and Hf is

H � ef�l=lf � 2Hf � 4Hf for case RR,
H � ef�l=r0 � 2Hf � pHf for cases RC and CC,

where the ¯uid volume fraction ef � �lf=ls� 2 and the
geometrical relation pr 20 � 4l 2f has been used. For case
CC, an analytical solution for the heat transfer coef-

®cient has been given in [3], which can be rearranged
as

Hf � 8

1� ÿÿ 2 ln ef ÿ 2es ÿ e 2s
�
=e 2s k

: �3�

Here the sum in the brackets is always positive in spite
of the three negative terms in form.
In the presence of a tortuous ¯ow, the VHTC is cor-

related with the average velocity huif : For cases of
¯uid ¯ow in straight ducts or pure heat conduction
problems, the convection term in Eq. (1a) vanishes and

the periodic boundary conditions, Eqs. (1e) and (1f),
reduce to zero-gradient boundary conditions for sym-
metric unit cells [2] (we use symmetric unit cells
throughout this study). To obtain the VHTC, the

closure problem in term of c need to be solved by nu-
merical techniques since analytical solutions are not
available except for very few cases. In the present

study, the numerical discretization is based on the con-
trol-volume ®nite di�erence method developed by
Patankar [8].

2.2. Solution procedure

In solving the closure problem, phase-identifying
functions are introduced to denote the domains of
di�erent phases. The basic phase-identifying function

is

g �
�
0 at Of

1 at Os
�4a�
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The conductivity related phase-identifying function is

s �
�
kf at Of

ks at Os
: �4b�

With the above phase-identifying functions, we can
unify Eqs. (1a) and (1b) into the following form

�1ÿ g��rc�fhuif � rcI

� r � ÿsrcI

�ÿ gcsf ÿ �1ÿ g�cff �5a�

where the uni®ed variable cI is given by

cI �
�
cf at Of

cs at Os
, �5b�

and csf and cff represent the interfacial integrals of
Eqs. (1a) and (1b), taking the form

cff � kf

Vf

�
nfs � rcf dAfs �5c�

csf � ÿksef

es

cff : �5d�

For the sake of convenience, rectangular grid systems

with equally spaced steps are employed for two- and
three-dimensional unit cells. The grid blocks for cases
RR and RC are shown schematically in Fig. 2, with

the shadowed domains representing the solid phase.
Each grid block corresponds to one control volume.
The solid±¯uid interface is de®ned at the locations of

the control volume faces.
In cases such as ¯uid ¯ow through straight ducts or

pure conduction problems, the convective term is zero
and Eq. (5a) can be discretized in the standard form.

For example, considering the control volume P in the
one-dimensional grid blocks shown in Fig. 2(c), the
discretized equation for Eq. (5a) without the convec-

tive term takes the form

Apjp � AWjW � AEjE � SuP, �6a�

where SuP is referred to as the source term. The coef-

Fig. 1. Two-dimensional unit cell: (a) case CC; (b) case RC; (c) case RR. The shadowed and the hollow domains represent the

solid and the ¯uid, respectively.
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®cients AW and AE are given in harmonic mean,

AW � 1

xwÿ=swÿ � xw�=sw�
, �6b�

AE � 1

xeÿ=seÿ � xe�=se�
, �6c�

where the subscript `ÿ' stands for values taken on the
left side of the control volume face and `+' for values
on the right side, as shown in the grid system Fig. 2(c),

and

AP � AW � AE: �6d�
With the phase-identifying functions, the source term
of the control volume next to the interface, P, can be
written as

SuP � SuP � AE�g� ÿ gÿ�, �6e�

where the term containing �g� ÿ gÿ� stands for the
additional source term due to the jump condition in

Eq. (1c). The di�erence �g� ÿ gÿ� denotes the unit nor-
mal vector nfs at the interface. If the ¯uid phase lies to

the left of the interface, �g� ÿ gÿ� � �1, otherwise
�g� ÿ gÿ� � ÿ1: In single-phase domains, the di�erence

is always zero and the additional source term cancels.
The introduction of the phase-identifying functions is
especially convenient in handling unit cells with com-

plex interface geometries.
The x-direction interfacial gradient at the ¯uid side

can be obtained from the following equation

@j
@x

����
f

� jE ÿ jP � g� ÿ gÿ
xeÿ=seÿ � xe�=se�

�6f�

This equation is used to determine cff and csf in Eqs.

(5c) and (5d) and the VHTCs in Eqs. (2a)±(2c) in the
process of the numerical iteration.
The discretized equations are solved by the line-by-

line TDMA algorithm. If, still taking the one-dimen-
sional case for example, the normalized residual

R �

X
nodes

ÿ
AWjW � AEjE � SuP ÿ APjP

�
X
nodes

APjP

< 10ÿ6,

�7a�

Fig. 2. Schematic of (a) the grid system for case RR; (b) the grid system for case RC and (c) the control volume P with the inter-

face being in position e.
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and the relative change in H between the successive
iterations satis®es����H i�1 ÿH i

H i�1

���� < 10ÿ6, �7b�

the numerical iteration is viewed to converge to the

solution. If the convective term is considered, the
power law pro®le is introduced to ensure positive coef-
®cients in the discretized equation. The detail of this
technique was shown in [8]. For the periodic con-

ditions, the computation is performed over an
extended domain. Further detail can be found in [9].

2.3. Numerical results

Here we present the VHTC results for the case with-
out a tortuous ¯ow, some of which will be used in the

later sections. Due to symmetry, the computation is
conducted over one quarter of a two-dimensional unit
cell or one eighth of a three-dimensional unit cell. A

numerical test for two- and three-dimensional unit cells
has been performed and the results for Hf and H are
listed in Table 1. The ef for each case is 0.25 except for
the three-dimensional hexagonal array case where ef �
0:395: We set k � 108 in the in®nite conductivity ratio
case. Available analytical solutions are also shown in
Table 1 for comparison. It is noted that the present

numerical results with the ®nest grid size listed in the
table for each case are accurate enough, even for unit
cells with circular and spherical ¯uid domains. In the

followings, the results from the calculation with the
®nest grid size for each case are presented.

The results of the VHTC H for two-dimensional

unit cells at di�erent ef and k are plotted in Fig. 3. For
the purpose of comparison, square unit cells with the
same volume, V � pr 21 � l 2, are used. The VHTCs

from the analytical solution for case CC, (Eq. (3)), are
also shown in Fig. 3. It is seen that the VHTC

increases with the thermal conductivity ratio for all the
unit cells. It is worthy pointing out that a larger

VHTC for case RR is due to the larger heat exchange
area, which is �2= ���

p
p ÿ 1� � 12:8% higher than the

other two cases at the same volume. Speci®cally, the

VHTC results for case RC with ef � 0:77, where the
critical volume fraction for the RC is nearly attained,

are signi®cantly smaller than those for case CC at low
and moderate conductivity ratios.

Fig. 4 shows the e�ective thermal conductivity for
these unit cells. The results can be used to obtain the
conductivity components in the energy equations pro-

posed in Section 4. It is found that the e�ective ther-
mal conductivities for the three unit cells increase with

the conductivity ratios and, at large conductivity
ratios, this increase becomes linear. Generally a close

agreement is found for the three kinds of unit cells.
While for case RC with ef � 0:77, the discrepancy is
observed when k is far di�erent from 1.

The results of the VHTC H for a three-dimensional
unit cell, the hexagonal spherical array, are shown in

Fig. 5, in which the results obtained from the idealized
three-dimensional sphere array [4] are also shown for

comparison, together with the available experimental
value for a nylon±water system [5]. Compared with the
reported numerical result H � 11:2 [5], the present

result �H � 10:5� is closer to the experimental value.

Table 1

Numerical results of the VHTC for di�erent grid sizes and unit cells

Cases Conductivity ratio Grid size Calculated Hf Analytical result

RR 1 42� 42 2.7832 2.7872 (Eq. (17))

82� 82 2.7870

1 42� 42 7.0964 7.1136 (Eq. (18b))

82� 82 7.1092

RC 1 42� 42 3.417 ±

62� 62 3.402

92� 92 3.408

1 42� 42 8.113 8 (Eq. (3))

62� 62 8.036

92� 92 8.036

Three-dimensional unit cell with cubic ¯uid domain 1 22� 22� 22 12.203 12.396 (Eq. (19))

32� 32� 32 12.309

42� 42� 42 12.347

Three-dimensional unit cell with spherical ¯uid domain 1 32� 32� 32 15.16 15 [4]

62� 62� 62 15.08

Three-dimensional hexagonal array 0.46 42� 42� 42 H � 10:49 Experiment: 8.0 [5]

62� 62� 62 H � 10:50
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3. Thermal analysis

Although the closure problem and the VHTC have
been solved by the numerical method in the previous
section, their thermal nature is so far not well dis-

cussed and understood. The c variable is rather a
mathematical quantity than the one related to the ther-
mal energy, or the temperature concept. In this section,

a thermal analysis will be presented and the thermal
nature of the VHTC will be interpreted by the anal-
ogous heat transfer cases. This analysis, on the other

hand, helps bridge the mathematically formulated
VHTC with practical heat exchange situations.
The thermal analysis begins with the temperature de-

composition in the VAM. The point temperature for

each phase over a representative elementary volume is
assumed to be the sum of the intrinsic average tem-

perature and the deviation temperature, i.e.,

Tf � hTfif � T 0f �8a�

Ts � hTsis � T 0s: �8b�

The deviation temperatures can be expanded in terms
of macroscopic temperature ®elds:

T 0f � bff � rhTfif � bfs � rhTsis � cf

ÿ
hTsis ÿ hTfif

�
�9a�

T 0s � bsf � rhTfif � bss � rhTsis � cs

ÿ
hTsis ÿ hTfif

�
�9b�

The truncated terms in the above expansion have been
shown to be negligible for relatively large time be-
havior in the cases of pure heat conduction [2,4]. bff ,

bfs, bsf and bss are thermal-conductivity-related closure

Fig. 4. E�ective thermal conductivities vs. solid±¯uid thermal

conductivity ratios at di�erent ef : (a) comparison of cases RR

and CC; (b) comparison of cases RC and CC.

Fig. 3. Volumetric heat transfer coe�cients vs. solid±¯uid

thermal conductivity ratios at di�erent ef (0.25. 0.51 and

0.77): (a) comparison of cases RC and CC; (b) comparison of

cases RR and CC.
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variables, known as b variables in the VAM. More
detail on the b variables can be found in [1,2,10±12].

Here we emphasize on the c ®eld and the VHTC.
The deviation temperatures T 0f and T 0s in Eqs. (9a)

and (9b) are, respectively, composed of three parts: the

contribution due to the macroscopic solid temperature
gradient, denoted by T 0f1 and T 0s1; the contribution due
to the macroscopic ¯uid temperature gradient, T 0f2 and

T 0s2; and the contribution due to the phasic tempera-
ture di�erence, T 0f3 and T 0s3: In the absence of macro-
scopic temperature gradients, the deviation

temperatures are related only to the phasic temperature
di�erence and the point temperatures, Eqs. (8a) and
(8b), reduce to

Tf � hTfif � T 0f3, �10a�

Ts � hTsis � T 0s3: �10b�

Multiplying Eqs. (1a)±(1f) by the macroscopic tem-
perature di�erence �hTsis ÿ hTfif � and noticing that
T 0f3 � cf �hTsis ÿ hTfif � and T 0s3 � cs�hTsis ÿ hTfif �, one
obtains the equations for the deviation temperatures ash
�rc�fhuif � rT 0f3

i
� r � ÿkfrT 0f3

�ÿ kf

Vf

�
nfs � rT 0f3 dAfs �11a�

0 � r � ÿksrT 0s3
�ÿ ks

Vs

�
nsf � rT 0s3 dAfs �11b�

T 0f3 � T 0s3 � hTsis ÿ hTfif ,

nfs � kfrT 0f3 � nfs � ksrT 0s3 at Afs

�11c�

T 0f3�r� l� � T 0f3�r�, T 0s3�r� l� � T 0s3�r�: �11d�

Here the phasic temperature di�erence �hTsis ÿ hTfif�
has been assumed to be a constant over the representa-
tive volume. In the absence of the spatial temperature

gradients, by using Eqs. (10a) and (10b), Eqs. (11a)±
(11d) can be written as

huif � rTf � r � �afrTf � ÿ af

Vf

�
nfs � rTf dAfs �12a�

0 � r � �asrTs � ÿ as

Vs

�
nsf � rTs dAfs �12b�

Tf � Ts, nfs � kfrTf � nfs � ksrTs at Afs �12c�

Tf�r� l� � Tf�r�, Ts�r� l� � Ts�r�: �12d�

In the above equations, the temperature gradients rTf

and rTs are referred to as the microscopic temperature
gradients which are meaningful within the unit cell.
They are di�erent from the temperature gradients

rhTfif and rhTsis at the macroscopic level. It is seen
that the closure problem has been reversibly trans-
formed into an analogous thermal problem in terms of

point temperatures. With the similar procedure, Eqs.
(2a)±(2c) can also be expressed

H � 1

hTsis ÿ hTfif
l 2

V

�
nfs � rTf dAfs, �13a�

Hf � 1

hTsis ÿ hTfif
l 2f
Vf

�
nfs � rTf dAfs, �13b�

Hf � 1

hTsis ÿ hTfif
r 20
Vf

�
nfs � rTf dAfs: �13c�

Namely the VHTC is also reformulated in terms of
point temperatures. Since nfs � rTf multiplied by kf

de®nes the heat ¯ux, the VHTC is thus physically
interpreted as the dimensionless average heat ¯ux at
the interface. Based on the analogous thermal problem,

Eqs. (12a)±(12d), the VHTC can be found directly by
the means of thermal analysis, instead of resorting to
the mathematically formulated closure equations (1a)±

(1f). We present two cases to further illustrate the ther-
mal analysis and, simultaneously, examine the thermal
nature of the VHTC.

Fig. 5. Volumetric heat transfer coe�cients vs. solid±¯uid

thermal conductivity ratios for three-dimensional unit cells.
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3.1. Case 1: circular two-phase domain

The circular domain is shown in Fig. 1(c), which
corresponds to case CC. The solution of the VHTC
has been shown in Eq. (3). As the conductivity ratio k
approaches in®nity, the maximum value Hf � 8 �H �
8p� is attained. This can be understood as the Nusselt
number for the classical heat transfer case in which a

uniform heat ¯ux is imposed from the wall to the ¯uid
¯owing in a circular tube with a uniform velocity pro-
®le. At a ®nite conductivity ratio, the analogous ther-

mal problem derived from Eqs. (12a)±(12d) is

1

r

@

@r

�
r
@Tf

@ r

�
� 2 0RrR1 �14a�

1

r

@

@r

�
r
@Ts

@ r

�
� ÿ 2

k
�
�r1=r0 � 2ÿ1

� 1RrRr1=r0 �14b�

where the temperatures Tf and Ts have been non-

dimensionalized by the characteristic temperature
qr0=kf with q being the heat ¯ux through the solid±
¯uid interface at r � 1: The solution of the temperature

®eld is

Tf �r� � Tfs ÿ 1

2
�1ÿ r 2 � 0RrR1 �14c�

Ts�r� � Tfs � �r1=r0 � 2
k
�
�r1=r0 � 2ÿ1

� ln r

ÿ 1

2k
�
�r1=r0 � 2ÿ1

� �r 2 ÿ 1�

1RrRr1=r0:

�14d�

Here Tfs denotes the temperature at the solid±¯uid
interface and is set to be zero since it is only a refer-

ence temperature. According to Eq. (13c), the VHTC
can be written as

Hf � 2

hTsis ÿ hTfif

� 8

1� ÿÿ 2 ln ef ÿ 2es ÿ e 2s
�
=e 2s k

: �15a�

This result is identical to Eq. (3). Namely the same
VHTC is obtained from the analogous heat transfer
case. The pro®le for the temperatures reduced by the

temperature di�erence �hTsisÿhTfif� has been shown in
Fig. 6(a) for di�erent conductivity ratios. Reversing
the thermal analysis procedure, we can obtain the c
®eld from the temperature solution. The corresponding
pro®le is shown in Fig. 6(b). It is observed that the
di�erence of the two pro®les lies in the value jump at

the interface. The gradient-dependent VHTCs from the
closure problem and the analogous thermal energy

equations are the same.
It is interesting to derive Hf for the analogous ther-

mal problem with a non-uniform velocity ®eld Ð fully

developed ¯ow in the circular tube. In this case, the
non-dimensional heat consumption term on the right-
hand side of Eq. (14a) becomes 4�1ÿ r 2� instead of 2

in the ¯uid domain. The VHTC takes the form

Hf � 8

4=3� ÿÿ 2 ln ef ÿ 2es ÿ e 2s
�
=e 2s k

�15b�

where the factor 4/3 instead of 1 appears in the de-

nominator and the heat transfer rate is, therefore,
decreased. This suggests that a smaller heat transfer
coe�cient is expected if non-uniform velocity ®eld is

taken into account.

Fig. 6. Results of (a) the temperature pro®le and (b) the

closure variable for case CC, with solid to ¯uid conductivity

ratios arranged in the order shown by the arrows as: 0, 0.2,

0.5, 1, 2, 5, +1.
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3.2. Case 2: rectangular two-phase domain

We consider the analogous thermal problem over a
rectangular two-phase domain. The coordinate system
is shown in Fig. 7. For such geometry, we consider

two special cases: k � 1 and k41, for which the ana-
lytical solutions of the analogous thermal energy
equations can be found.

When k � 1, there is no jump in the temperature
gradient. We assume the spatial average temperature
hTi � 0: The dimensionless thermal balance equation

with uniform heat generation in the solid and heat
consumption in the ¯uid is

@ 2T

@y2
� @

2T

@z2

�

8>>>><>>>>:
1 0RyRa and 0RzRb

ÿab
b

0RyRa and bRzRb,

or aRyR1 and bRzRb

The boundaries are all thermally insulated. By using

Green's functions one can obtain the temperature pro-
®le as

T � ÿ 2bb
bÿ ab

X1
m�1

cos
ÿ
bmy

�
sin
ÿ
bna

�
b3m

ÿ 2ab3

bÿ ab

X1
n�1

cos
ÿ
bnz=b

�
sin
ÿ
bnb=b

�
b3n

ÿ 4
b

bÿ ab

X1
m�1

X1
n�1

� � ÿ 1�m�n cos
ÿ
bmy

�
cos
ÿ
bnz=b

�
sin
ÿ
bma

�
sin
ÿ
bnb=b

�
bmbn

h
b2m �

ÿ
bn=b

�2i
�16�

with bm � mp, bn � np and m, n are positive integers.
The temperature has been non-dimensionalized by the

characteristic temperature �a� b�qls�kfab�ÿ1 with q
being the averaged heat ¯ux through the interface.
With Eq. (13b) the heat transfer coe�cient Hf can be

expressed as

Hf � �ab=b�
8<: 2bb 2

a�bÿ ab� 2
X1
m�1

sin4
ÿ
bma

�
b4m

� 2ab5

b�bÿ ab� 2
X1
n�1

sin 2
ÿ
bnb=b

�
b4n

� 4b3

ab�bÿ ab� 2
X1
m�1

X1
n�1

sin 2
ÿ
bma

�
sin 2

ÿ
bnb=b

�
b 2
mb

2
n

h
b 2
m �

ÿ
bn=b

� 2i
9=;
ÿ1

�17�

For b � 1 and a � b � 1=2, Eq. (17) yields Hf �
2:7872: This value is very close to the numerical result
2.7870 with a 82 � 82 grid system as listed in Table 1.
The temperature pro®le based on the analytical sol-

ution is shown in Fig. 8(a). The closure variables can
be reversibly obtained from the thermal analysis. The
corresponding c pro®le is displayed in Fig. 8(b).
As k41, the solid temperature is uniform and only

the temperature ®eld in the ¯uid domain is meaningful.
For simplicity we take a � 1 and b � b: Again we set
the reference temperature Tfs � 0: The solution for the

analogous thermal problem with uniform heat con-
sumption in the ¯uid is

Tf � ÿ4�1� b�
b

X1
m�1

X1
n�1

� ÿ 1�m�n cos
ÿ
bmy

�
cos
ÿ
bnz

�
b 2
mb

2
n

h
b 2
m �

ÿ
bn=b

� 2i
�18a�

where bm � �mÿ 1=2�p and bn � �nÿ 1=2�p: The tem-
perature has been non-dimensionalized by the charac-

terized temperature qlf=kf : The heat transfer coe�cient
is obtained as

Hf �
8<:4

X1
m�1

X1
n�1

1

b 2
mb

2
n

h
b 2
m �

ÿ
bn=b

� 2i
9=;
ÿ1
: �18b�

For a square unit cell, i.e., b � 1, the result of Hf is
7.1136. This value agrees with the calculated result
7.1092 in Table 1. If b approaches in®nity, i.e., a strati-

®ed system, Hf43:
In the three-dimensional case with cubic ¯uid

domain, the Hf at k41 is given by
Fig. 7. Coordinate system for the thermal analysis of case

RR.
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Hf �
8<:8

X1
m�1

X1
n�1

X1
p�1

1

b 2
mb

2
n b

2
p

�
b 2
m � b 2

n � b 2
p

�9=;
ÿ1

�19�

where bm � �mÿ 1=2�p, bn � �nÿ 1=2�p and bp �
�pÿ 1=2�p: The converged value is 12.396. The numeri-
cal result with a 42 � 42 � 42 grid system is 12.347.

Consistency is achieved for the closure formulation
and the thermal analogy formulation.
The thermal analysis of the VHTC is especially use-

ful in initiating the modi®cation of the VHTC. In con-
ventional VAM modeling, the VHTC as well as other

transport coe�cients is assumed to be constant
throughout the porous medium and can be obtained
by the closure formulation or the thermal analogy for-

mulation. Its applicability, however, is within the mod-
eling limitation such as the small Peclet number
constraint (this will be discussed in the next section).

In a ®nite-size porous system with large Peclet number,
this constraint will be violated and e�orts should
be made on the modi®cation of such a transport

coe�cient. Inferred from the thermal analysis, the
modi®cation could be made by taking into account the
analogous heat transfer at the unit-cell level. At this
microscopic level, the heat transfer occurs in a manner

being di�erent from the conventional VAM modeling
with a constant VHTC. In contrast, the VHTC is a
variable quantity along the ¯ow direction due to the

thermal entrance e�ect. On the other hand, the non-
uniformity of the ¯ow ®eld will cause a smaller asymp-
totic VHTC as seen in the foregoing discussion. In the

next section, an improved VHTC model is discussed in
detail.

4. Improved VHTC model with ¯uid ¯ow

4.1. Limitations of the VAM with ¯uid ¯ow

In the case of convection heat transfer, the validity
of the VAM with the closure formulation is restricted
to low and moderate microscopic Peclet number Pel,

as reported by the present authors [7]. Such limitations
are inherent from the VAM. In the self-contained
development of this methodology, porous media are
assumed homogeneous and the local temperature

expansions (Eqs. (9a) and (9b)) are valid everywhere in
the system. If the ¯uid ¯ow is considered, the following
Peclet number criterion should be satis®ed [7]:

Pel � hui
f l

af

� L

l
:

i.e., the microscopic Peclet number should be much
smaller than the macroscopic to microscopic length

ratio so that the VAM could be valid. At large Peclet
number Pel, this criterion is easily violated and the
local average scheme given in Eqs. (9a) and (9b) may

break down, especially at or around the thermal
entrance region of a porous heat transfer system. Fur-
thermore, the additional convective terms in the VAM,

due to non-uniformity of the velocity ®eld, will pro-
duce a result that does not coincide with the energy
conservation [1,6].

Fig. 8. Results for case RR with k � 1: (a) temperature pro-

®le; (b) closure variable.

H.Y. Zhang, X.Y. Huang / Int. J. Heat Mass Transfer 43 (2000) 3417±3432 3427



4.2. Improved VHTC model

We attempt to improve the VHTC model so that it
may be extended to larger Peclet number. It was
reported [7] that the solid temperature at the entrance

region, where x is smaller, is larger than the predicted
result from the point equations while the ¯uid tem-
perature is underestimated. Maintaining the thermal

conductivity components unchanged, this observation
indicates that the VHTC is larger at the smaller x. If
turning to the microscopic heat transfer that occurs in

a straight channel, as suggested by the thermal analy-
sis, and knowing that a large heat transfer coe�cient
at a small x corresponds to the thermal entrance
phenomenon, we may reconsider the VHTC as a func-

tion of x following the thermal entrance theory [13].
Namely

H�x� � c0H f�x� �20�

where c0 is a constant, which is less than one as a
result of the non-uniformity of the velocity ®eld, H
is the original VHTC in the VAM and can be read

out from Fig. 3, and f �x� is a modi®cation function
based on the thermal entrance phenomenon and is
given as

f�x� � Nux
Nux jx41

�21�

Since the Nusselt number correlations for rectangular

ducts are not available [13], we make use of the
thermal entrance heat transfer result generated from
a circular tube. The determination of the local Nus-
selt number Nux and the Nusselt number Nuxjx41
for a circular tube can be found in [13]. For the
two dimensional porous system shown in Fig. 9(a),
the energy equations in dimensionless form are pro-

posed as follows:

In the solid phase

efPeL
@Tf

@x
� ef

@ 2Tf

@x 2
� Kff, zz

kf

@ 2Tf

@z 2

� Kfs, zz

kf

@ 2Ts

@z 2
�
�
L

l

� 2

H�x��Ts ÿ Tf �
�22a�

In the ¯uid phase

0 � esk
@ 2Ts

@x 2
� Kss, zz

kf

@ 2Ts

@z 2
� Ksf, zz

kf

@ 2Tf

@z 2

�
�
L

l

� 2

H�x��Tf ÿ Ts � �22b�

Here intrinsic average operators hif and his have been
omitted for brevity. The dimensionless temperatures

take the following form

Tf � T �f ÿ T �in
T �wall ÿ T �in

, Ts � T �s ÿ T �in
T �wall ÿ T �in

The superscript `�' has been used to denote the dimen-
sional temperatures, and T �wall and T �in are the tem-
peratures of the hot surface and the inlet ¯uid. The

macroscopic Peclet number PeL is de®ned by the
macroscopic length Lz: The terms containing the con-
ductivity components Kff, zz, Kfs, zz, Kss, zz and Ksf, zz

represent the conductive e�ects in z direction due to
the lateral heating. They can be obtained numerically
or experimentally according to the VAM theory, for
instance, in [2]. Further detail can be found in [10±12].

The calculation of these conductivity components for
the present modeling has been shown in the Appendix.
�Kss, zz seems much larger than the other conductivity

components. However, we retain all these terms to be
consistent with the VAM). The additional convective
terms in the VAM are removed from Eqs. (22a) and

(22b) to meet the energy conservation requirement.
For case RR shown in Fig. 9(b), the constant c0 in

Eq. (20) is about 0.50 for isothermal boundary con-
ditions, which is found by ®tting the overall averaged

solid temperature or the mixed mean ¯uid temperature
from the modi®ed model with that from the point-wise
modeling. This value is a little di�erent from the result

for a circular tube case (0.75 for k � 1000). The modi-
®ed VHTC model is shown in Fig. 10 in comparison
with the original VHTC model.

Fig. 9. A porous medium model with ¯uid ¯owing through

straight rectangular ducts: (a) the heat transfer system; (b) the

porous cross sections vertical to the ¯ow direction.
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4.3. Numerical modeling and veri®cation

The modi®ed VHTC model is still an empirical one.
Its validity is examined by comparing the results from
the point equations. The porous system characterized

by straight rectangular ducts is selected, as shown in
Fig. 9, with the representative unit cell corresponding
to the RR case de®ned in the foregoing section. The

selection of such pore structure renders less e�ort for
the point-wise modeling due to the regularity of the
geometry while the computational accuracy is ensured.

Ten unit cells are employed in z direction so that
l=L� 1: The ¯uid ¯ow is assumed uniformly fully-
developed at the inlet of each duct. Once the three-
dimensional point temperature ®elds are obtained, the

averaged temperatures can be calculated by the follow-
ing equations:

Tf �x� � 1

huifLyLz

�
Tf�x, y, z�u�y, z��1ÿ g� dy dz, �23a�

Ts�x, z� � 1

Ly

�
Ts�x, y, z�g dy, �23b�

Ts�x� � 1

LyLz

�
Ts�x, y, z�g dy dz, �23c�

where g is the phase-identifying function de®ned in the
same form as Eq. (4a), with the phasic domain of the
de®nition being extended to the overall porous medium

system instead of one unit cell.
By comparing with the point-wise modeling, the

present model is found to be applicable to convection

heat transfer with Pel ranging from several tens to sev-

eral thousands. Thus, the VAM is extended to the
overall laminar ¯ow regime if water or air is used as

working ¯uids. In the followings we will show the
results with isothermal conditions for the case of Pel �
1000 with k � 1000: This high conductivity ratio is a

representative of practical systems with metallic solid
matrix, such as copper±water, copper±air, or stainless
steel±air systems.

In Fig. 11, the solid and ¯uid temperature pro®les
along the ¯ow direction x are presented for the three
models: the original VAM modeling, the modi®ed

model and the point-wise modeling. It is seen that the
deviation of the VAM is signi®cant, while the modi®ed
model produces much better results in spite of the
local temperature expansion constraints in the VAM.

The details of the solid and ¯uid temperature ®elds
are shown in Fig. 12. The di�erent temperature pro®les
for the solid and the ¯uid suggests the necessity of a

two-equation modeling. The span-wise averaged solid
temperature pro®le from the point-wise modeling is
also shown in Fig. 12(a) for comparison. As we can

see, the agreement is generally ®ne. It is noted that the
dashed lines corresponding to the point-wise modeling
are not well smoothed out. This originates from the

introduction of a zeroth order weighting function, the
phase-identifying function g into the span-wise aver-
aging of the point temperature ®eld. A higher order
weighting function will help smooth out the lines. In

the present work, however, the zeroth order weighting
averaging seems enough to illustrate the overall agree-
ment of the two models as shown in the ®gure.

Fig. 11. Solid and ¯uid temperature pro®les vs. the axial dis-

tance x=L for di�erent models. The solid temperature pro®les

for the modi®ed model and the point-wise modeling are very

close.Fig. 10. Comparision of heat transfer coe�cient models.
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5. Conclusions

The modeling of the VHTC in solid±¯uid porous
media with consolidated matrix structures has been
conducted at the unit-cell level. The value of the

VHTC is numerically determined by solving the
closure problem developed in the VAM. The control-

volume ®nite di�erence method is used and the phase-
identifying functions are introduced to facilitate the
solution over the two-phase domain. The thermal

nature of the VHTC is explored by means of thermal
analysis. The conclusions can be drawn as follows:

1. The interfacial jump condition in the closure

problem can be treated as an additional source term

in the discretized equation to simplify the solution
procedure. The calculated VHTC results in the pre-

sent study have been veri®ed with available analyti-

cal results and the good agreement has been
achieved. The results for the two-dimensional unit

cells are found not sensitive to the geometry, while
for three-dimensional cases, the VHTCs vary signi®-

cantly versus the geometry.

2. A thermal analysis of the VHTC is conducted by
inspecting the theoretical origin. In this analysis, the

Fig. 12. Temperature pro®les based on the modi®ed model: (a) the solid matrix temperature pro®le and comparision with the

point-wise modeling; (b) the ¯uid temperature pro®le.

H.Y. Zhang, X.Y. Huang / Int. J. Heat Mass Transfer 43 (2000) 3417±34323430



VHTC is interpreted as the dimensionless average
heat ¯ux at the interface and the analogous thermal

problems with circular and rectangular domains
have been examined. The thermal analysis presented
in this paper may help to develop more rigorous

VHTC models for practical porous medium sys-
tems.

3. In the application of the VAM to a forced convec-

tion heat transfer in a solid matrix characterized by
straight ducts, an improved VHTC model is pro-
posed by incorporating the analogous unit-cell-level

heat transfer mechanism, in which the e�ects of the
non-uniformity of the velocity ®eld and the thermal
entrance at the microscopic level are taken into
account. By comparing with the point-wise model-

ing, the new VHTC model is found to be able to
predict heat transfer for the large Peclet number
laminar ¯ow regime with water and air as working

¯uids. This modeling permits optimization of
designing practical porous heat sinks in heat trans-
fer enhancements with greatly reduced modeling

e�orts. It also suggests an analytical technique for
convection heat transfer in porous media with much
more complicated structure.

Appendix

Determination of the thermal conductivity components

In the modi®ed VAM modeling, Eqs. (22a) and
(22b), the components of the conductivity tensors are
related to the thermal tortuosity due to the di�erent

phasic conductivities and geometries. They can be eval-
uated directly from the b variables in the VAM. A
theoretical description of the thermal conductivity com-

ponents has been elaborated in [2]. Here we are not
intending to repeat the detailed process since this is not
straightforward. We just present how to obtain the con-

ductivity components related to the modeling Eqs.
(22a) and (22b) by making use of the e�ective thermal
conductivity tensor Ke� in the one-equation model.

The relationship between the e�ective thermal con-
ductivity tensor Ke� and the tortuosity tensor B is

Keff=kf �
�
ef � �1ÿ ef �k

�
I� ef�1ÿ k� 2B: �A1�

Here the e�ective conductivity tensor Ke� corresponds
to the one-equation model and can be obtained by the
conventional experimental measurement or theoretical

calculation over a single unit cell [10]. Considering the
zz component, one ®nds the tortuosity e�ect from Eq.
(A1) as

Bzz �
�
Keff, zz=kf ÿ ef ÿ �1ÿ ef �k

�
=ef �1ÿ k� 2 �A2�

The conductivity components can be given as

Kff, zz=kf � ef�1� Bzz � �A3�

Kfs, zz=kf � ÿkefBzz �A4�

Ksf, zz=kf � Kfs, zz=kf � ÿkefBzz �A5�

Kss, zz=kf � esk
�
1� k

ef

es

Bzz

�
�A6�

Note that the following correlation holds:

Keff, zz � Kff, zz � Kfs, zz � Ksf, zz � Kss, zz: �A7�
As an example, considering case RR with ef � 0:25
and k � 1000, the e�ective conductivity is Keff=kf �
577:6: From Eq. (A2) Bzz � ÿ6:900eÿ 4: The corre-
sponding dimensionless conductivity components are

Kff, zz=kf � 0:25�1ÿ 6:900eÿ 4� � 0:2498

Kfs, zz=kf � Ksf, zz=kf � 0:1725

Kss, zz=kf � 577:5

References

[1] R.G. Carbonell, S. Whitaker, Heat and mass transfer in

porous media, in: J. Bear, M.Y. Corapcioglu (Eds.),

Fundamentals of Transport Phenomena in Porous

Media, Martinus Nijho�, Dordrecht, The Netherlands,

1984, pp. 123±198.

[2] M. Quintard, S. Whitaker, One and two-equation

models for transient di�usion processes in two-phase

systems, Adv. Heat Transfer 23 (1993) 369±465.

[3] F. Zanotti, R.G. Carbonell, Development of transport

equations for multiphase systems Ð III. Application to

heat transfer in packed beds, Chem. Engng. Sci 39

(1984) 263±278.

[4] M. Quintard, S. Whitaker, Local thermal equilibrium

for transient heat conduction: theory and comparison

with numerical experiments, Int. J. Heat Mass Transfer

38 (1995) 2779±2796.

[5] G. Grangeot, M. Quintard, S. Whitaker, Heat transfer

in packed beds: interpretation of experiments in terms

of one- and two-equation models, in: Proceedings of the

10th International Heat Transfer Conference, Brighton,

UK, vol. 5, 1994, pp. 291±296.

[6] M. Kaviany, Principles of Convective Heat Transfer,

Springer-Verlag, New York, 1994 (Chap. 5).

[7] H.Y. Zhang, X.Y. Huang, C.Y. Liu, Studies of convec-

tion heat transfer in porous media characterized by

straight ducts, in: Proceedings of the 5th ASME/JSME

Thermal Engineering Joint Conference, 1999.

H.Y. Zhang, X.Y. Huang / Int. J. Heat Mass Transfer 43 (2000) 3417±3432 3431



[8] S.V. Patankar, Numerical Heat Transfer and Fluid

Flow, Hemisphere, New York, 1980.

[9] S.V. Patankar, C.H. Liu, E.M. Sparrow, Fully devel-

oped ¯ow and heat transfer in ducts having streamwise-

periodic variation of cross-sectional area, J. Heat

Transfer 99 (1977) 180±186.

[10] I. Nozad, R.G. Carbonell, S. Whitaker, Heat conduc-

tion in multiphase systems Ð I. Experimental method

and results for two-phase systems, Chem. Engng. Sci 40

(1985) 843±855.

[11] M. Sahraoui, M. Kaviany, Slip and no-slip temperature

boundary conditions at interface of porous, plain media:

conduction, Int. J. Heat Mass Transfer 36 (1993) 1019±

1033.

[12] M. Sahraoui, M. Kaviany, Slip and no-slip temperature

boundary conditions at the interface of porousmedia: con-

vection, Int. J. HeatMass Transfer 37 (1994) 1029±1044.

[13] W.M. Kays, M.E.C. Crawford, Convective Heat and

Mass Transfer, 3rd ed., McGraw-Hill, New York, 1993

(Chap. 9).

H.Y. Zhang, X.Y. Huang / Int. J. Heat Mass Transfer 43 (2000) 3417±34323432


